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Abstract—Knowing a sufficient and necessary condition for be-
ing a threshold function (TF) is quite crucial for TF identification
algorithm. However, to the best of our knowledge, no one pro-
posed an efficient sufficient and necessary condition for being a TF.
Hence, the state-of-the-art approach to this identification problem
exploits a necessary condition, and a weight and threshold value
assignment approach to identify TFs instead. In fact, a sufficient
and necessary condition for being a TF had been proposed many
decades ago, which is called the Summable Theorem. However,
this theorem and the corresponding checking algorithm are not
practical from the viewpoint of efficiency due to the high com-
plexity. As a result, in this work, we propose several theorems
such that the complexity of the TF identification algorithm can
be significantly reduced. Furthermore, according to the experi-
mental results, 76%∼96% computations are saved on average,
and 40%∼75% CPU time are saved on average, for a set of 6-
input∼9-input unate functions.

I. INTRODUCTION

Threshold logic has been attracting great attention from re-
searchers due to its similarity to an artificial neuron. As compar-
ing with Boolean logic, threshold logic can concisely represent
the thresholding behavior of an artificial neuron in the Neu-
ral Networks (NNs) [1]. Additionally, the rapid development
of emerging technologies such as Resonant Tunneling Diodes
[2], Quantum Celluar Automata [11], Single Electron Transis-
tors [20], and Memristors [17] also resulted in the flourishing
research of threshold logic.

A Linear Threshold Gate (LTG) is the primitive element in
the threshold logic. The function f of an LTG with n binary
inputs, x1,. . . ,xn, is defined as EQ(1).

f(x1, x2, . . . , xn) =


1, if

n∑
i=1

xiwi ≥ T

0, if
n∑

i=1

xiwi < T

(1)

Each binary input xi has a corresponding weight wi. If∑n
i=1 xiwi is greater than or equal to the threshold value T , the

output of f is 1; otherwise, the output of f is 0. A function that
can be represented by an LTG is called a Threshold Function
(TF). For example, a function f = x1x2 +x1x3 is a TF and the
corresponding LTG is shown in Fig. 1(a). However, a function
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g = x1x2 + x3x4 is not a TF, which is called a non-TF. Fig.
1(b) shows the corresponding threshold network that consists of
more than one LTG to represent the non-TF g. A fundamental
but important topic in threshold logic is to determine whether a
given function is a TF or not. This is because many applications,
such as threshold logic synthesis [15] and equivalence checking
[6], need efficient and effective algorithms for TF identification.

Recently, several heuristics for TF identification have been
proposed. For example, the authors of [16] proposed a method
that first generated an inequality system about the weights and
threshold value from a given function. Then by simplifying this
inequality system and incrementally assigning the weights and
threshold value in the simplified inequality system, the weights
and threshold value of an LTG might be obtained. Once the
weights and threshold value satisfying EQ(1) are found, the
function is a TF and the corresponding LTG can be realized.

Later, the authors of [10] observed the flip situation in the
TF identification algorithm of [16]. The TF identification algo-
rithm with the flip situation might fail to identify some given
TFs. Therefore, a more comprehensive method was proposed in
[10], which provided a new weight assignment procedure and
improved the results of TF identification algorithm.

Traditionally, unateness is a necessary condition of a TF. That
is, all the TFs are unate. If a function is not unate, it is a non-
TF. Recently, a theoretic study [9] proposed a new necessary
condition of a TF, which is more precise than the unateness
such that more non-TFs can be removed in the early stage of
the TF identification algorithm [10].

However, there still may exist some non-TFs that cannot be
pruned out by this new necessary condition. Those non-TFs still
enter the stage of weight assignment though. Since the weight
and threshold value cannot be obtained intrinsically for a non-
TF, the TF identification algorithm will return undetermined
when the algorithm cannot report a conflict in the inequality
system [10]. Thus, knowing a sufficient and necessary condition
for being a TF is quite crucial for TF identification algorithm.
In fact, many decades ago, the author of [13] had proposed
a sufficient and necessary condition for being a TF, which is
called the Summable Theorem. However, this theorem and the
corresponding checking algorithm are not practical from the
viewpoint of efficiency due to high complexity. Therefore, in
this paper, we propose several theorems such that the complexity
of the TF identification algorithm can be significantly reduced.

The main contributions of this work are twofold:
1) We propose an improved Summable Theorem, which is

called the Semi-Critical Summable Theorem, for unate func-
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Fig. 1. (a) A Boolean function f = x1x2 + x1x3 represented by an LTG. (b)
The threshold network of function g = x1x2 + x3x4.

tions. This research advances the theoretic study about
threshold functions.

2) In comparison to the Summable Theorem, 76%∼96% of
computations can be reduced on average and 40%∼75% of
CPU time can be reduced for unate functions with 6 to 9
inputs.

II. PRELIMINARIES

In this section, we review the background of this work.

A. Unate Function

Unate function is a subset of Boolean function with a mono-
tonicity property. An n-input function f(x1, x2, ..., xi, ..., xn) is
said to be positive unate in variable xi if and only if for all
possible values in other variable xj , where j 6= i,

f(x1, x2, ..., xi−1, xi = 1, xi+1, ..., xn) ≥
f(x1, x2, ..., xi−1, xi = 0, xi+1, ..., xn). (2)

Similarly, an n-input function f(x1, x2, ..., xi, ..., xn) is said to
be negative unate in variable xi if and only if

f(x1, x2, ..., xi−1, xi = 0, xi+1, ..., xn) ≥
f(x1, x2, ..., xi−1, xi = 1, xi+1, ..., xn). (3)

If f is either positive or negative unate in all the variables, f is
said to be an unate function or the function has the unateness
property. For example, x1x2 + x1x3 and x′1x2 + x′1x3 are both
unate functions, while x′1x2 + x1x3 is not a unate function. If
f is positive (negative) unate in all the variables, it is said to
be a positive (negative) unate function. Since we can obtain an
equivalent NPN-class function by simply permuting, or negating
the inputs or outputs of the given function [13], we just consider
positive unate functions in this work.

B. Threshold Function

TF is a subset of Boolean function that can be represented by
an LTG. All the TFs are unate functions. Since unateness is a
necessary condition for being a TF, we can exploit unateness to
accelerate the TF identification algorithm. That is, if a function
is not unate, it is a non-TF.

C. Summable Theorem

Summable Theorem was proposed in [13], which can be used
to identify whether a given function is a TF or not by checking
the equality of summation of some input vectors. Let fon denote
the on-set of f and foff denote the off-set of f .

Definition 1 [13]: A function f is said to be k-summable if
and only if for some k, 2 ≤ k, there exist two sets A ⊆ fon,
B ⊆ foff such that {A(j)|f(A(j)) = 1}, {B(j)|f(B(j)) = 0},
and

k∑
j=1

A(j) =
k∑

j=1

B(j) (4)

provided that repetition of vectors in the sets A and B are per-
mitted. If f is k-summable for some k, f is said to be summable
for short; otherwise, f is said to be asummable.

Theorem 1 (Summable Theorem) [13]: A function f is a TF
if and only if f is asummable.

Proof [13]: Omitted. �

Corollary 1: A function f is a non-TF if and only if f is
summable.

Proof: By the contraposition of Theorem 1, we have Corollary
1. �

Theorem 1 states that asummability is a sufficient and nec-
essary condition for being a TF. For example, given a Boolean
function f = x1x2+x1x3. Since there does not exist 2 ≤ k such
that

∑k
j=1 A

(j) =
∑k

j=1 B
(j), where A ⊆ fon and B ⊆ foff ,

f is asummable. Thus, f is a TF. On the other hand, given
a Boolean function g = x1x2 + x3x4. When considering two
vectors A(j) from gon, i.e., A(1) = 1100, A(2) = 0011, and two
vectors B(j) from goff , i.e., B(1) = 1010, B(2) = 0101, we
have

∑2
j=1 A

(j) = 1111 =
∑2

j=1 B
(j). Thus, g is 2-summable,

i.e., summable by Definition 1. According to Corollary 1, g is
a non-TF.

Although Theorem 1 reveals the sufficient condition for be-
ing a TF, we barely use it to identify whether a function is a
TF or not in practice. This is because this checking procedure
will never be terminated. For example, given a Boolean func-
tion f = x1x2 + x1x3. If we want to know that f is a TF
by Theorem 1, we need to know that f is asummable. That
is, we have to confirm that there does not exist sets A and B
satisfying EQ(4) for all 2 ≤ k. Furthermore, since the repetition
of vectors in the sets A and B are permitted, no upper bound
exists for k. As a result, this checking procedure will never be
terminated. This is also the reason why the previous TF identifi-
cation algorithms [10][16] exploited weight and threshold value
assignment procedure to identify a TF. That is, when the weights
and threshold value of an LTG with respect to a function are
found, the function is a TF.

D. A New Necessary Condition for Threshold Function

Recently, the work [9] proposed another theoretical study
about the necessary condition for being a TF.

Definition 2 [9]: Two functions f and g have the implication
relation if and only if f ⊆ g or g ⊆ f .

Theorem 2 [9]: If a function f is a TF, then its two cofactor
functions, f(xi = 1, xj = 0) and f(xi = 0, xj = 1) have the
implication relation, for all input pairs xi, xj .

Proof [9]: Omitted. �

147

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on April 09,2022 at 07:49:05 UTC from IEEE Xplore.  Restrictions apply. 



From the contraposition of Theorem 2, we can know that
for a function f , if there exist two cofactor functions, f(xi =
1, xj = 0) and f(xi = 0, xj = 1), that do not have the impli-
cation relation for an input pair xi and xj , then f is a non-TF.
For example, given a function f = ab + ad + bc. We have
the following two cofactor functions, f(a = 1, b = 0) = d
and f(a = 0, b = 1) = c. Since d * c and c * d, the two
cofactor functions do not have the implication relation. Thus,
the function f = ab + ad + bc is a non-TF.

As compared to unateness, the implication relation in Theo-
rem 2 is more precise. Many unate functions that are non-TFs,
as the last example, can be successfully identified by Theorem
2.

III. SEMI-CRITICAL SUMMABLE THEOREM

In this section, we present the proposed Semi-Critical
Summable Theorem that can significantly reduce the time com-
plexity of the TF identification exploiting Summable Theorem
mentioned in Theorem 1.

A. Time Complexity of Summable Theorem

To determine if an n-input function f , which contains s vec-
tors ∈ fon and t vectors ∈ foff and s + t = 2n, is summable
or not, we have to compute all the combinations in EQ(4). That
is, we first check whether the function is 2-summable by se-
lecting two vectors from fon and two vectors from foff . Since
these two vectors can be chosen repeatedly according to Defi-
nition 1, the time complexity of checking 2-summable for the
function f is O(s2t2). Similarly, the time complexity of check-
ing k-summable for the function f is O(sktk). Obviously, this
summable checking procedure is computation-intensive, espe-
cially when the sizes of fon and foff are getting larger. Fur-
thermore, there does not exist an upper bound about k for this
checking procedure because the vector repetition in the sets A
and B are permitted.

Since the unateness property is a necessary condition for be-
ing a TF, we can easily identify the given functions as non-TFs
if they are not unate. Thus, to demonstrate the strength of the
proposed theorem, we assume that all the functions to be identi-
fied are positive unate functions. In the next subsection, we will
introduce how to reduce the sizes of sets A and B in EQ(4) for
improving the efficiency of the summable checking procedure.

B. Set Size Reduction in the Summable Theorem

Before introducing how to reduce the set sizes in the
Summable Theorem, we first introduce the definitions of the ON
Critical Vectors (ONCVs) and OFF Critical Vectors (OFFCVs)
of a function.

Definition 3: Given an input vector v ∈ fon (foff ) of a positive
unate function f , v is said to be an ONCV (OFFCV) if and only
if every single bit of v flips from 1 to 0 (0 to 1), the output of
f also flips from 1 to 0 (0 to 1).

For example, Fig. 2(a) shows the truth table of a positive
unate function f = a+ bc. According to Definition 3, we know

Fig. 2. (a) The truth table of f = a+ bc and the ONCVs and OFFCVs of f .
(b) The input vector 110 can be obtained by applying a decrement operation
on the input vector 111. The input vector 001 can be obtained by applying an
increment operation on the input vector 000.

that the input vectors 011 and 100 are ONCVs, and the input
vectors 001 and 010 are OFFCVs.

Next, we define two operations, decrement and increment, for
an input vector v that turn v into different vectors by flipping
one of its input bits.

Definition 4: Given an input vector v in a positive unate func-
tion f , the decrement (increment) operation is defined as flip-
ping one bit in v from 1 to 0 (0 to 1) to obtain another input
vector v̂, and f(v) = f(v̂).

Fig. 2(b) shows some decrement and increment operations.
For example, the input vector 110 can be obtained from the
input vector 111 by applying a decrement operation. Note that
both vectors 110 and 111 have the same output value. Similarly,
the input vector 001 can be obtained from the input vector 000
by applying an increment operation.

Lemma 1: Given a positive unate function f , for each vector
v ∈ foff , except for the all-0 vector, we can apply a decrement
operation on it.

Proof: Applying a decrement operation on an input vector
means that the output will be intact after the operation. Since
the function f is positive unate, and according to its definition
in EQ(2), assume that we have

f(x1, x2, ..., xi−1, xi = 1, xi+1, ..., xn) ≥
f(x1, x2, ..., xi−1, xi = 0, xi+1, ..., xn)

for any xi. Furthermore, a non-all-0 vector v ∈ foff always
has the output of 0. Hence, without loss of generality, we can
have

f(x1, x2, ..., xi−1, xi = 1, xi+1, ..., xn) = 0.

When we flip the input bit xi from 1 to 0, we will have

f(x1, x2, ..., xi−1, xi = 0, xi+1, ..., xn) = 0

based on EQ(2). Thus, we can apply a decrement operation on
v. �

Lemma 2: Given a positive unate function f , for each vector
v ∈ fon, except for the all-1 vector, we can apply an increment
operation on it.
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Fig. 3. The relationship among all the input vectors of a 3-input function.

Proof: Lemma 2 can be proved in a similar way as Lemma 1.
Thus, this proof is omitted. �

Theorem 3: Given a non-constant positive unate function f .
An ONCV of f can be obtained by applying finite times of
decrement operations on a non-ONCV ∈ fon.

Proof: Let Θn
i denote a set of n-input vectors where the number

of 1 in each input vector is i. For example, Θ4
1 contains four

input vectors 0001, 0010, 0100, and 1000. We can construct a
directed acyclic graph G to represent the relationship among all
the input vectors. An edge (u, v) in G indicates that an input
vector u flips one of its input bits from 1 to 0 to turn into v.
For example, Fig. 3 illustrates the relationship among all the
input vectors of a 3-input function.

According to the construction rule in G, a vector u ∈ Θn
i

has i edges connecting to i different vectors in Θn
i−1, which are

denoted as vj , 0 < j ≤ i. If f(u) = 1 and f(vj) = 0 for all
0 < j ≤ i, then u is an ONCV by Definition 3. For example,
each vector in Θ3

2 has two edges connecting to the vectors in
Θ3

1. If f(110) = 1 and f(100) = 0, f(010) = 0, the input
vector 110 is an ONCV. Note that Θn

n and Θn
0 are the input

vectors consisting of n 1s and 0s, respectively. For example,
Θ3

3 = 111 and Θ3
0 = 000.

Now, we are going to prove that an ONCV can be obtained by
applying finite times of decrement operations on a non-ONCV
∈ fon. That is, we will reach to an ONCV by traversing G
along the edges from a node representing a non-ONCV ∈ fon.
Traversing an edge (u, v) where f(u) = f(v) means applying
a decrement operation on u.

Since f is a positive unate function, and by the construction
rule of graph G, we know that there does not exist an edge
(u, v) with f(u) = 0 and f(v) = 1. That is, the edges in
the graph G only cause three types of changes in the output,
namely, 1 → 1, 1 → 0, and 0 → 0. Since f is a non-constant
positive unate function, we have f(Θn

n) = 1 and f(Θn
0 ) = 0.

This is because if f(Θn
n) = 0, then f is a constant 0 function;

and if f(Θn
0 ) = 1, then f is a constant 1 function. Given a

non-ONCV ∈ fon, it means that there exists an input bit of the
non-ONCV such that the bit flips from 1 to 0 but the output is
still 1. Therefore, we can conduct a decrement operation on the
non-ONCV.

By contradiction, assume that we cannot obtain an ONCV by
applying finite times of decrement operations on a non-ONCV
∈ fon. When the non-ONCV is in Θn

n (f(Θn
n) = 1), we can

apply a decrement operation on it, and turn it into a vector
p ∈ Θn

n−1 (f(p) = 1). Since p is still a non-ONCV by the
hypothesis, we can apply a decrement operation on it again and
turn it into a vector p′ ∈ Θn

n−2 (f(p′) = 1), and so on. Finally,
we will reach to a vector u ∈ Θn

1 (f(u) = 1). Since u is still a

non-ONCV, it means that there exists one edge (u, v) such that
v ∈ Θn

0 and f(u) = 1, f(v) = 1. However, we have known
that there is only one vector v ∈ Θn

0 and f(v) = 0, which
contradicts f(v) = 1.

Thus, for a non-ONCV ∈ fon, it will be turned into an ONCV
by applying finite times of decrement operations. �

Theorem 4: Given a non-constant positive unate function f .
An OFFCV of f can be obtained by applying finite times of
increment operations on a non-OFFCV ∈ foff .

Proof: Theorem 4 can be proved in a similar way as Theorem
3. Thus, this proof is omitted. �

By Theorem 3 and Lemma 1, we know that we can ap-
ply decrement operations on any non-ONCVs ∈ fon and any
non-all-0 vectors ∈ foff . According to Summable Theorem
as mentioned in Definition 1 and Corollary 1, there exists
one pair of vector sets A ⊆ fon and B ⊆ foff such that∑k

j=1 A
(j) =

∑k
j=1 B

(j) for a non-TF. Thus, we can apply
one decrement operation on a non-ONCV in A and one decre-
ment operation on a non-all-0 vector in B. When the decrement
operation is applied on the same bit for both sets, the summa-
tion of vectors in A and the summation of vectors in B will be
still equal. As a result, we can apply finite times of decrement
operations on all the non-ONCVs in the set A and the corre-
sponding vectors in the set B until all the non-ONCVs in A
are turned into ONCVs. That is, if a function f is summable,
there exist two sets A, B such that all the vectors in the set A
are only ONCVs, all the vectors in the set B ⊆ foff , and the
summations of vectors in the set A, in the set B are equal. With
this derivation, the set A can be reduced to containing ONCVs
only.

Similarly, by Theorem 4 and Lemma 2, we can apply one
increment operation on a non-all-1 vector ∈ fon in A and one
increment operation on a non-OFFCV ∈ foff in B such that
the summations of vectors in the sets A and B are still equal.
After finite times of increment operations on both sets, all the
non-OFFCVs in the set B are turned into OFFCVs. That is, if
a function f is summable, then there exist two sets A, B such
that all the vectors in the set A ⊆ fon, all the vectors in the set
B are only OFFCVs, and the summations of vectors in the set
A, in the set B are equal. Again, with this derivation, the set
B can be reduced to containing OFFCVs only.

Next, based on these derivations mentioned, we define semi-
critical summable for a function.

Definition 5: A function f is said to be semi-critical k-
summable if and only if for some k, 2 ≤ k, there exist two sets
A ⊆ fon, B ⊆ foff such that either {A(j)|A(j) is an ONCV},
{B(j)|f(B(j)) = 0}, or {A(j)|f(A(j)) = 1}, {B(j)|B(j) is an
OFFCV}, and

k∑
j=1

A(j) =
k∑

j=1

B(j) (5)

provided that repetition of vectors in the sets A and B are
permitted. If f is semi-critical k-summable for some k, f is
said to be semi-critical summable.
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Theorem 5 (Semi-Critical Summable Theorem): A positive
unate function f is a non-TF if and only if f is semi-critical
summable.

Proof: (⇒) If f is a non-TF, f is k-summable for some k by
Corollary 1. Hence, there exist two sets A and B such that
{p1, p2, ..., pk} ∈ A, {q1, q2, ..., qk} ∈ B, and the summations
of vectors in the sets A and B are equal. Let pi be a non-
ONCV ∈ fon in A, then we can apply a decrement operation
on one of its inputs. Assume that we apply a decrement oper-
ation on the mth input of pi. That is, the mth input of pi is
1, and the mth input summation of vectors in A ≥ 1. Since
the summations of vectors in A and B are equal, the mth input
summation of vectors in B also ≥ 1. Thus, there exists a vector
qj in B whose mth input is 1, and we can apply a decrement
operation on the mth input of qj by Lemma 1. After applying
a decrement operation on the mth input of both vectors pi and
qj , the summations of vectors in A and B are still equal.

Thus, we know that for any non-ONCVs in the set A, we
can find a corresponding vector in the set B such that we can
apply decrement operations on the same input of both vectors.
According to Theorem 3, each non-ONCV in the set A can
be finally turned into an ONCV. Therefore, we can apply a
decrement operation on each non-ONCV in the set A and the
corresponding vector in the set B until all the vectors in the set
A are ONCVs. At this moment, all the vectors in the set B are
still ∈ foff . Thus, f is semi-critical summable by Definition 5.

Similarly, we can apply increment operations on the vectors
in the sets A and B, and turn all the vectors in the set B into
OFFCVs while the set A contains vectors ∈ fon. Thus, f is
semi-critical summable by Definition 5.

(⇐) Since when f is semi-critical summable, f is summable
definitely. From Corollary 1, we know that if f is summable, f
is a non-TF. Thus, if f is semi-critical summable, f is a non-TF.
�

Theorem 5 indicates that if f is semi-critical summable, f is a
non-TF. As compared with Corollary 1, the time complexity for
checking non-TFs by using Theorem 5 is significantly reduced.
Specifically, the time complexity for checking whether a func-
tion f , which contains s vectors ∈ fon and t vectors ∈ foff , is
k-summable is O(sktk), for 2 ≤ k. However, using Theorem 5,
we do not need to check all the vector combinations in fon and
foff simultaneously, Instead, we only need to check if there
exist a set A consisting of ONCVs and a set B consisting of
vectors ∈ foff such that the summations of vectors in the sets
A and B are equal. Thus, the time complexity can be reduced
to O(|ONCV |ktk), where |ONCV | is the number of ONCVs
in f .

On the other hand, we only need to check if there exist a
set A consisting of vectors ∈ fon and a set B consisting of
OFFCVs such that the summations of vectors in the sets A and
B are equal. Thus, the time complexity can also be reduced to
O(sk|OFFCV |k), where |OFFCV | is the number of OFFCVs
in f . Note that we cannot turn all the vectors in the set A into
ONCVs and turn all the vectors in the set B into OFFCVs
simultaneously. Thus, the time complexity for checking if f is k-

TABLE I
NUMBERS OF FUNCTIONS IN DIFFERENT GROUPS OF INPUT N.

n 0 1 2 3 4 5 6
Number of NPN-equivalence classes of 1 1 1 3 11 95 8,170unate functions with n inputs (N1)
Number of NPN-equivalence classes of 1 1 1 3 9 48 504TFs with n inputs (N2)
Number of NPN-equivalence classes of 0 0 0 0 2 47 7,666non-TFs with n inputs (N3)

summable will be O(min{(|ONCV |ktk), (sk|OFFCV |k)}).
For example, for a 7-input function f = abcd+abcef+abdeg,

f has 12 vectors ∈ fon and 116 vectors ∈ foff . The time com-
plexity for checking f is k-summable is O(12k116k) originally.
However, f has 3 ONCVs and 7 OFFCVs only. Hence, by The-
orem 5, we can reduce the time complexity to either O(3k116k)
or O(12k7k). Obviously, O(12k7k) is the better one.

IV. EXPERIMENTAL RESULTS

We implemented the proposed algorithm in C++ language.
The experiments were conducted on an Intel Xeon E5-2650v2
2.60 GHz CentOS 6.7 platform with 64GBytes. Since the pro-
posed Semi-Critical Summable Theorem focuses on the summa-
tion computation with ONCVs and OFFCVs of positive unate
functions, we generate positive unate functions for each group
of functions with the same number of inputs ranging from 5 to
9 as the benchmarks. We selected one positive unate function
from each NPN-equivalence class.

TABLE I shows the number of functions in different groups
of input. The numbers of NPN-equivalence classes of unate
functions and TFs are provided from [13]. Thus, we can obtain
the number of NPN-equivalence classes of non-TFs. Note that
the numbers of NPN-equivalence classes of unate functions pro-
vided from [13] are only up to 6-input functions. Thus, we only
have the exact numbers of functions and non-TFs ranging from
0 to 6 inputs. We have generated all the NPN-equivalent positive
unate functions with 5 and 6 inputs, whose total numbers are
95 and 8170, respectively. For input numbers ranging from 7
to 9, we randomly picked 300,000 functions.

Originally, the summable checking procedure needs to com-
pute all the combinations of the vectors ∈ fon and the vectors
∈ foff . With the Semi-Critical Summable Theorem, we can
either replace the combinations of vectors ∈ fon with ONCVs,
or replace the combinations of vectors ∈ foff with OFFCVs.
Thus, in the first experiment, the reduction of computations fo-
cuses on the difference between the number of vectors ∈ fon

and that of ONCVs, or the difference between the number of
vectors ∈ foff and that of OFFCVs.

TABLE II shows the average ratio R1 of the number of ON-
CVs to the number of vectors ∈ fon (s), and the average ratio
R2 of the number of OFFCVs to the number of vectors ∈ foff

(t) for all the generated functions, while s+t = 2n. The average
ratio is R1 = 39.04% and R2 = 29.84% when the number of
inputs is 5, which is the highest value among all the results.
As the number of inputs increases, R1 and R2 are reduced
significantly. When the number of inputs is 9, R1 and R2 are
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TABLE II
THE AVERAGE RATIOS OF THE NUMBER OF ONCVS TO THE NUMBER OF
VECTORS ∈ fon (s) AND THE NUMBER OF OFFCVS TO THE NUMBER OF

VECTORS ∈ foff (t), s+ t = 2n .

n N1 R1 = |ONCV |/s (%) R2 = |OFFCV |/t (%)
5 95 39.04 29.84
6 8,170 28.51 26.63
7 300,000 19.77 14.75
8 300,000 9.57 7.06
9 300,000 6.51 3.85

TABLE III
THE COMPARISON OF THE AVERAGE NUMBER OF COMPUTATIONS BETWEEN
THE ORIGINAL TIME COMPLEXITY AND THE REDUCED TIME COMPLEXITY.

n N1 s× t
min{(|ONCV | × t), Ratio (%)
(s× |OFFCV |)}

5 95 227.31 63.26 27.83
6 8,170 970.00 230.26 23.74
7 300,000 3,549.17 506.81 14.28
8 300,000 12,232.06 835.46 6.83
9 300,000 36,652.27 1,348.48 3.68

smaller than 7% for the randomly generated 300,000 functions.
Thus, using either ONCVs to replace the vectors ∈ fon, or
OFFCVs to replace the vectors ∈ foff improves the efficiency
of summable checking procedure.

The second experiment shows the reduction of computations
from the complexity viewpoint. The original time complexity of
the k-summable checking procedure is O(sktk), and the reduced
one is O(min{(|ONCV |ktk), (sk|OFFCV |k)}). Hence, we
can extract and ignore the power of k, and compare the number
of computations for the remaining terms only. TABLE III shows
the comparison on the number of computations. As the num-
ber of inputs increases one, the number of vectors in fon and
foff are roughly double. Thus, the product of s × t becomes
about four times. Since our method can select the smaller part,
which is either |ONCV |× t or s×|OFFCV |, to compute, the
number of computations will become about double or triple as
the number of inputs increases one. In TABLE III, the largest
computation ratio between our approach and the original com-
plexity is only 27.83% for the 5-input functions, and this ratio
keeps decreasing as the number of inputs increases. When the
number of inputs is 9, we can reduce about 96% computations
on average. Thus, the number of computations in the summable
checking procedure using the proposed Semi-Critical Summable
Theorem can be significantly reduced. When the power of k is
further considered, the reduction of computations will be even
tremendous.

V. CONCLUSION

Asummability is a sufficient and necessary condition for be-
ing a TF in Summable Theorem. However, the identification
of TFs using Summable Theorem is not efficient in practice.
Hence, in this work, we propose Semi-Critical Summable The-
orem to deal with the high complexity issue in Summable Theo-
rem. The experimental results show that the proposed theorems
are sound, and advance the theoretic study about threshold func-
tions.
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